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Abstract

The Stokes eigenmodes in the square are numerically determined and their symmetry properties are identified. The

spectra evolution laws are in excellent qualitative agreement with the theoretical asymptotic predictions proposed by

Constantin and Foias (in ‘‘Navier–Stokes equations’’, University of Chicago Press, 1988), kk ’ k þ Oð
ffiffiffi
k

p
Þ. The slopes

are reported here and are found to be specific to the eigenmodes symmetry family. The dynamic equilibria are analyzed

and show a linear relationship between the vorticity and the stream function in the core of the eigenmodes. These

features of the Stokes eigenmodes confined in the square are shared by the fully periodic Stokes eigenmodes.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Why to study the Stokes eigenmodes, whereas nonlinear dynamics is the most attractive part of the

Navier–Stokes equations? The dynamical behaviors governed by the Navier–Stokes equations result

from the way this nonlinear dynamics is controlled by diffusion. For instance, in isothermal mono-

component fluid, turbulence can be primarily seen as resulting from an imbalance between the ðu � rÞu
and Du contributions. No internal length scale can be found to put these terms in equilibrium. Un-

derstanding then the intrinsic dynamics of the diffusion part of Navier–Stokes can supply an interesting

point of view on turbulence.
Since the early work of Taylor [35] on the leading eigenmode of the buckling load problem, only a few

attempts have been made to compute few Stokes eigenvalues and/or eigenmodes in fully confined geom-

etries [5–11,13,36–38]. Apart from the theoretical predictions proposed in [14] on the asymptotic behavior
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of the eigenvalues in 2D or 3D confined domains, there is as yet no global view of the Stokes eigenspace in

the square. This is because Stokes eigenmodes in confined geometries are not easily accessible.

Numerically determining the confined Stokes eigenmodes is not an easy task. The choice made for
uncoupling the pressure from the velocity fields is crucial for the consistency and computational complexity

of the scheme. For instance, in [5] a Uzawa uncoupling method is applied for computing the eigenmodes of

the generalized singular Stokes problem in order to provide a basis for the channel and grooved channel

flows. This approach – already expensive in 2D – practically excludes access to 3D eigenmodes. To the

authors’ point of view, the projection-diffusion (PrDi) uncoupling [20], which is also consistent with the

continuous problem [22] but optimal in computation cost, allows the 2D/3D eigenmodes to be computed.

The scope of the present work is to provide the first deep insight into the Stokes eigenspace in the square.

The eigenvalues and eigenmodes are accurately computed by two different means, namely, a Chebyshev
PrDi solver and a Galerkin–Reid–Harris (RH) expansion of the stream function. The symmetries which

underlie the eigenmode patterns are also identified. The evolution laws of the spectra were fitted. They

qualitatively agree with the theoretical estimations proposed in [14]. An analysis of the peculiar dynamics of

the eigenmodes is also performed. Each symmetry family exhibits its own spectrum slopes. Furthermore, a

linear relationship between the vorticity and the stream function is inferred from the dynamic equilibria at

the core of each eigenmode. Frequent references are made to the fully periodic Stokes eigenspace features.

Confined 2D flows can thus be characterized by functional relationships between the vorticity and the

stream function not only in the inviscid regions at high Reynolds number [4].
2. Outline

The paper is organized as follows. The governing equations are first presented in Section 3 for the

various Stokes formulations. In view of further comparisons, Section 4 recalls the analytical expressions of

the Stokes eigenmodes which are periodic in all, and in all but one, space directions. Section 5 presents the

symmetry families of the Stokes eigenmodes in the square. Section 6 presents the solvers. Since corner
eddies are expected to be part of each eigenmode, Section 7 makes a brief survey of their properties. Finally,

the results are presented in Section 8, followed by a conclusion.
3. Governing equations

Let us write the dimensionless unsteady (time t) 2D Stokes equations, with primitive variables, in the

open domain X ¼� � 1; 1½2 with coordinates x ¼ ðx; yÞ and T a real positive number:

ou

ot
¼ Du�rp þ f for ðx; tÞ 2 X��0; T ½;

r � u ¼ 0 for ðx; tÞ 2 X��0; T ½;
ð1Þ

where u ¼ ðu; vÞ is the velocity field, p the pressure and f a source term. We denote the closure of X by X and

the boundary by oX. Dirichlet boundary conditions are imposed on the velocity

u ¼ V for ðx; tÞ 2 oX��0; T ½;

and compatible initial conditions are given

uðt ¼ 0Þ ¼ V0 for x 2 X:
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3.1. The Stokes eigenproblem in primitive variables

The eigenproblem is defined by ou=ot ¼ ku together with f ¼ 0 ¼ V, k being thus the algebraic temporal
growth rate of u. The eigensystem reads as follows:

ku ¼ Du�rp for x 2 X;

r � u ¼ 0 for x 2 X;

u ¼ 0 for x 2 oX:

ð2Þ
3.2. The Stokes eigenproblem in stream function formulation

An alternative form of the system of Eq. (2) is its stream function formulation, known in structural

mechanics as the buckling load problem [28,35]. It is based on wðxÞ such that ðu; vÞ ¼ ðow=oy;�ow=oxÞ, and
reads

ðk� DÞDw ¼ 0 for x 2 X ð3Þ

with homogeneous no-slip/no-flux boundary conditions

w ¼ ow
on

¼ 0 for x 2 oX; ð4Þ

n being the coordinate evaluated along n, the outward unit vector normal to oX.
4. The presently known Stokes eigenmodes

This paper concerns the Stokes eigenmodes in the square. To the authors’ knowledge, the Cartesian

Stokes eigenmodes are not analytically known except when they are periodic in all, or in all but one, space

directions. If they are indeed constrained to satisfy velocity no-slip conditions on a closed boundary they

can only be determined by a numerical approach. For future reference a brief survey of the analytically

known Cartesian eigenmodes is provided in this section.
4.1. The fully periodic Stokes eigenmodes

Starting from Eq. (1) the fully periodic solutions of the Stokes problem

u

p

� �
¼ ~u

~p

� �
eiðk�xþxtÞ

are associated with a periodic source term f ¼ ~feiðk�xþxtÞ, where (~u, ~p, ~f) are complex Fourier coefficients, and

k the wavevector. The solution reads

~p ¼ �i
k̂ � ~f
k

; ðixþ k2Þ~u ¼ ½~f � k̂ðk̂ � ~fÞ�;

where k̂ is the unit vector along k and k ¼ kk̂. The fully periodic eigenmode (k ¼ ix) is therefore defined by

~p ¼ 0; ðkþ k2Þ~u ¼ 0; k̂ � ~u ¼ 0: ð5Þ
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It is thus important to notice that the periodic Stokes eigenmodes are pure isobaric (p ¼ 0) diffusion modes,

with k ¼ �k2. Moreover the constraint r � u ¼ 0 does not affect their spatial structure, but only requires the

wavevector k̂ to be transverse to the velocity.

4.2. The 1D confined Stokes eigenmodes

The 1D confined (in x) Stokes eigenmodes are presented in detail in [25]. They are expressed according to

u

p

� �
¼ ~uðxÞ

~pðxÞ

� �
eikyþkt;

where k is a wavenumber and (~uðxÞ; ~pðxÞ) are complex functions. The stream functions of the eigenmodes

are either symmetric or anti-symmetric in x, with their eigenvalues k ¼ �ðk2 þ l2Þ, respectively, obtained
from

leven tanðlevenÞ ¼ �k tanhðkÞ; lodd cotðloddÞ ¼ k cothðkÞ:

The first eigenvalues are listed in [25] for k ¼ 1; 10.
5. Symmetries

Apart from translation, which is not of interest here, two planar isometries will be considered [32].

Firstly, the h-rotation. Secondly, the (D)-symmetry which is the reflection about the straight line (D)
making an angle a=2 with the unit horizontal axis êx (Fig. 1). Let us successively denote RðhÞ and SðaÞ as
the operators which describe these transformations, and jWðMÞi a state (defined below) known as a scalar

function Wðx; yÞ. One will have jWðM 0Þi ¼ RðhÞjWðMÞi and jWðM 00Þi ¼ SðaÞjWðMÞi the new states, re-

spectively obtained after rotation and (D)-symmetry applied on jWðMÞi. The respective coordinate

transformations are

x0

y 0

� �
¼ cosðhÞ � sinðhÞ

sinðhÞ cosðhÞ

� �
x
y

� �
;

θ
M’’

α/2

x

(D)

M

M’
x x

xe

yê

^

Fig. 1. h-Rotation and reflection about a straight line (D) making an angle a=2 with êx.
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and

x00

y 00

� �
¼ cosðaÞ sinðaÞ

sinðaÞ � cosðaÞ

� �
x
y

� �
:

Composition rules are easy to establish, for instance

Rðh1ÞRðh2Þ ¼ Rðh1 þ h2Þ;
RðhÞSðaÞ ¼ Sðhþ aÞ; SðaÞRðhÞ ¼ Sða� hÞ;
Sða1ÞSða2Þ ¼ Rða1 � a2Þ;

which leads to the following identity relations:

ðRðhÞÞ2 ¼ 1 if h ¼ np; jnj ¼ 0; 1; . . . and ðSðaÞÞ2 ¼ 1 8a:

It follows:

(a) If RðpÞjWi ¼ njWi, one has necessarily n ¼ �1.

(b) If jWi verifies Rðp
2
ÞjWi ¼ njWi, one has necessarily RðpÞjWi ¼ jWi, and n ¼ �1.

(c) If SðaÞjWi ¼ njWi, one has necessarily n ¼ �1 8a.
In the square the angles a and h are quantified as integer multiples of p=2. A total of four rotations and four

(D)-symmetries are thus possible in this domain. These are generated by only three independent trans-

formations, chosen here as being RðpÞ, Rðp
2
Þ and Sð0Þ, whose common eigenmodes span the functional

space of any Stokes solution. Let us note jn1; n2; n3i these eigenmodes thus defined by the following three

relations:

RðpÞjn1; n2; n3i ¼ n1jn1; n2; n3i;

R
p
2

� �
j1; n2; n3i ¼ n2j1; n2; n3i;

Sð0Þjn1; n2; n3i ¼ n3jn1; n2; n3i;

in which we have n1 ¼ �1, n3 ¼ �1 and n2 ¼ �1 only with n1 ¼ 1. The n1 ¼ �1 states have no Rðp=2Þ
symmetry. They are denoted by j � 1; =;�1i. Together with the j1;�1;�1i states, we have therefore six

symmetry families for classifying the Stokes solutions. Those having given n2 and n3 are also eigenmodes of

Sðð2nþ 1Þðp=2ÞÞ, representing reflection about the square diagonals with n2n3 as eigenvalue. Therefore, in
contrast with the others, the families j � 1; =;�1i have no reflection symmetry about the square diagonals.
Finally, from the relations

R
p
2

� �
j � 1; =;�1i ¼ �j � 1; =;�1i

it is inferred that the Stokes eigenmodes which are odd under the p-rotation appear by pair associated with

the same eigenvalue.
6. Solvers

Computing the Stokes eigenmodes can be made from either their (velocity–pressure) primitive variables

or stream function formulation, but the choice of the scheme is particularly relevant. For instance, one of
the problems raised by the accurate numerical determination of the eigenmodes regards the possible
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requirement of enforcing the numerical velocity to be divergence free in order to obtain relevant and

convergent results.

With the former formulation, the well-known Stokes solvers are either non-consistent, namely the time-
splitting schemes, or very expensive even for the 2D present case, namely the Uzawa [2,27] and Green (or

influence matrix) [19] options. On the stream function formulation side, an interesting Galerkin–Legendre

or –Chebyshev approach is proposed in [30,31] for solving the fourth order scalar elliptic equation. It has

been used in [8,9,36] for computing the very first buckling load eigenmodes. It is worth mentioning here that

the biorthogonal series based on ‘‘Papkovich-Fadle’’ polynomial expansions [16,29,33] cannot be used for

solving this problem. They lead indeed to a transcendental eigenvalue system, the matrix entries depending

on the eigenvalue to evaluate [34].

The present work is based on two different spectral expansions, associated with each Stokes formulation: a
Chebyshev polynomial expansion and the Galerkin–RH decomposition. The former one feeds a pseudo-

spectral solver in primitive variables (the PrDi) known to be consistent with the continuous space–time

problem [22] and optimal in computation cost. The latter one with easy implementation, uses the well-known

no-slip/no-flux eigenmodes of the fourth-order differential problem [18,26] for directly solving the stream

function formulation. These approaches are quite different, as regards, for instance, the numerical velocity.

In the former case the divergence is allowed to vanish (see Section 6.1.1) but only asymptotically with the cut-

off frequency whilst for the latter case it is exactly zero. The RH approach will play an assessment role for this

aspect of the problem, and also help in the interpretation and in completion of the PrDi results. A systematic
comparison of the numerical convergence of PrDi and RH solutions is provided in [23].
6.1. Formulation in velocity–pressure variables

The unsteady Stokes problem is solved with a PrDi solver which uncouples the ðu; pÞ fields independently
of any temporal scheme. Section 3.2 in [22] provides all the details about the discrete formulation of the

problem, which this section relies on. The spatial discretization is based on the usual Chebyshev Gauss–

Lobatto collocation method [17,12]. Let N be the polynomial cut-off frequency, where N þ 1 is the number

of collocation points, in each space direction. For the sake of conciseness, the equations in this subsection

are written as the continuous transposition of the corresponding discrete problem, with for instance r�
standing for the discrete ðN þ 1Þ2 divergence operator and x 2 X meaning that only the internal nodes are

concerned.
From the first equation (2), an intermediate divergence free field is introduced, the acceleration a,

a ¼ ku� Du for x 2 X

and the problem is solved through two steps.

(1) The pressure is evaluated from

aþrp ¼ 0 for x 2 Xi ði ¼ 1; 2Þ;

r � a ¼ 0 for x 2 X

a � n ¼ ðr �r� uÞ � n for x 2 oX;

ð6Þ

where

X1 ¼� � 1;þ1½�½�1;þ1�;

X2 ¼ ½�1;þ1��� � 1;þ1½

for the respective components of the first equation in (6).
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It is important to mention here the following equivalent (N ! 1) numerical version of this step (see

Sections 3.2 and 4.2 in [22])

Dp ¼ 0 for x 2 X;

op
on

¼ �ðr �r� uÞ � n for x 2 oX:
ð7Þ

(2) Then the velocity is evaluated through the diffusion step

ku� Du ¼ a for x 2 X;

u ¼ 0 for x 2 oX:
ð8Þ
6.1.1. About the solenoidality of the numerical eigenmodes

The system (6) of the pressure step provides a numerical field a whose divergence exactly cancels at all

the nodes, boundaries included, whereas by Eq. (7) this divergence vanishes only on the internal nodes.

However, the truncation of the diffusion step (8) prevents, in both cases, the resulting velocity from being

solenoidal, but asymptotically with the cut-off frequency, if this field verifies the required regularity con-

ditions. As a consequence, the eigenmodes of both equivalent versions of this solver (6)–(8), or (7) and (8)

cannot be exactly divergence free. It is then worth preparing the interpretation of the results by predicting

the main features of the forthcoming eigenmodes. By Eqs. (6)–(8) or (7) and (8), the numerical eigenmodes

verify the relation

ku ¼ rðr � uÞ � r �r� u�rp for x 2 X; ð9Þ

which, applied onto the boundaries where u ¼ 0, implies that
0 ¼ rðr � uÞ � r �r� u�rp for x on oX: ð10Þ
Two distinct cases are now encompassed:

(1) The PrDi eigenmode is asymptotically divergence free. It is therefore a candidate for a genuine Stokes
eigenmode, and it must verify, to a good accuracy, at all the nodes on the boundary the relation

rp ¼ �r�r� u � Du for x on oX: ð11Þ

For this eigenmode category, it makes sense to define a stream function wðxÞ solution of the vorticity

relationship xðxÞ � ov=ox� ou=oy ¼ �Dw, with w ¼ 0 on the boundary where it also verifies the zero flux

condition.

(2) The PrDi eigenmode is not asymptotically divergence free. Applying then the divergence to Eq. (9),

and taking into account both relations (7) lead to the corresponding characteristic relations

kðr � uÞ ¼ Dðr � uÞ for x 2 X;

o

on
ðr � uÞ ¼ 0 for x 2 oX:

ð12Þ

Modes with finite divergence are thus allowed to exist in the numerical system, but as eigenmodes of the

divergence diffusion, with a spectrum corresponding to zero divergence flux boundary conditions. Their

eigenvalues are multiple integers of ð�p2=4Þ, excluding k ¼ 0 which would imply r � u ¼ 0.
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6.1.2. The discrete Stokes operator

The expression of the discrete Stokes operator as well as preliminary results on its spectrum are given in

Section 4.1 of [22]. A brief presentation of this operator is made now.
Its expression is the direct numerical translation of ku ¼ Du�rp. Denoting by U the column vector,

of ðN � 1Þ2 entries, the internal nodal values of u (it vanishes on the boundary), the time evolution discrete-

in-space operator L reads

kU ¼ LU � ADð þBÞU: ð13Þ

The first part of L is the diffusion operator, the discrete Laplacian, AD, defined accordingly with the

Dirichlet homogeneous velocity boundary conditions. The second operator, B, brings the contribution of

the pressure gradient, obtained from Eq. (6) and fed by the associated boundary conditions. This B op-

erator handles a reduced number of independent quantities, namely the 4N boundary nodal values of
ðr �r�UÞ � n, and therefore possesses a large kernel of dimension ðN � 1Þ2 � 4N . The genuine Stokes

eigenmodes are those which satisfy the relation (11). They are generated by the coupling of AD and B and

their number cannot exceed 4N . They are to be extracted by symmetry family. The remaining L eigen-

modes are of diffusion type, Eq. (12). We therefore see that the coupling between diffusion and the con-

tinuity constraint is minimized in Eq. 13, i.e. reduced to accounting for the existence of boundaries, which is

not far from what happens in the fully periodic case (see the last two sentences of Section 4.1).
6.2. Stream function formulation

A Galerkin–RH expansion of the stream function is here adopted for solving the system (3) and (4). Let

CiðxÞ ¼
1ffiffiffi
2

p coshðlixÞ
coshðliÞ

�
� cosðlixÞ

cosðliÞ

�
; SiðxÞ ¼

1ffiffiffi
2

p sinhðmixÞ
sinhðmiÞ

�
� sinðmixÞ

sinðmiÞ

�
; i ¼ 1; 2; . . .

be the, respectively, even and odd eigenfunctions of the 1D differential problem

d4f
dx4

¼ k4f ; f ðx ¼ �1Þ ¼ 0 ¼ df
dx

ðx ¼ �1Þ

with the respective eigenvalues l4
i and m4i roots of

tanhðliÞ þ tanðliÞ ¼ 0; cothðmiÞ � cotðmiÞ ¼ 0:

The stream function can be looked for as appropriate Galerkin expansions of the 2D tensorial products of

these 1D functions. For each symmetry family there exists a simple way to generate functions of x and y
which enjoy the desired symmetries. Let EðxÞ and OðxÞ represent two functions (possibly endowed with a

subscript), respectively, even and odd with respect to their argument, x, for the moment. It can be checked

that the analytical representation of the different states is

j1;�1; 1i � E1ðxÞE2ðyÞ � E2ðxÞE1ðyÞ;
j1;�1;�1i � O1ðxÞO2ðyÞ � O2ðxÞO1ðyÞ;
j � 1; =; 1i � OðxÞEðyÞ;
j � 1; =;�1i � EðxÞOðyÞ:
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Their Galerkin expansion, in terms of the RH functions, then reads

j1; 1; 1i ¼
XI

iP j¼1

aij CiðxÞCjðyÞ
�

þ CjðxÞCiðyÞ
�
;

j1;�1; 1i ¼
XI

i>j¼1

aij CiðxÞCjðyÞ
�

� CjðxÞCiðyÞ
�
;

j1; 1;�1i ¼
XI

i>j¼1

aij SiðxÞSjðyÞ
�

� SjðxÞSiðyÞ
�
;

j1;�1;�1i ¼
XI

iP j¼1

aij SiðxÞSjðyÞ
�

þ SjðxÞSiðyÞ
�
;

j � 1; =; 1i ¼
XI

i;j¼1

aijSiðxÞCjðyÞ;
j � 1; =;�1i ¼
XI

i;j¼1

aijCiðxÞSjðyÞ:

Only one of the last two eigenmodes needs to be evaluated, the other being simply deduced by application

of p=2-rotation. They have identical eigenvalues and only five eigenmodes families are thus presented

hereafter.

A given I provides I2 Stokes modes in the family j � 1; =;�1i, IðI þ 1Þ=2 Stokes modes j1; 1; 1i and

j1;�1;�1i, and IðI � 1Þ=2 Stokes modes j1;�1; 1i and j1; 1;�1i.
The stream function wðx; yÞ of each family of eigenmode corresponds to a particular set of aij coefficients

to be computed for verifying Eq. (3).
7. About the singular corner eddies

As is well known since Moffatt’s work [24], the Stokes eigenmodes contain an infinite sequence of similar

corner eddies, singular at each of the square four corners, verifying D2w ¼ 0 with w ¼ ow=on ¼ 0 on the

boundaries. They are not specific of the Stokes eigenmodes but of their symmetry: the corner eddies are

even about the square diagonals for the families j1; 1; 1i and j1;�1;�1i (Fig. 2(a)), odd for j1;�1; 1i and
j1; 1;�1i (Fig. 2(b)), and without diagonal symmetry for the last families j � 1; =;�1i (Fig. 2(c)). The in-
tensity of each eddy decreases exponentially towards the corners. This reduction is much more rapid when

the eddies are odd about the square diagonals, that is with the families j1;�1; 1i and j1; 1;�1i. As a

consequence, these eddies are mainly even in the families j � 1; =;�1i (Fig. 2(c)).
Their complete description is supplied in [23], their main characteristics (intensities and position of the

corner eddies centers) being pointed out, in each symmetry family, illustrating in this way the different

capabilities of both solvers.

These corner eddies provide the major contribution to the divergence of the numerical velocity supplied

by the PrDi solver. It is therefore expected that jr � uj be much smaller for the j1;�1; 1i and j1; 1;�1i
families than for the others, as explained in [23].

In contrast, the diffusion eigenmodes, see Eq. (12), do not contain any corner eddy.
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Fig. 2. Enlargements of the wðx; yÞ contour plots of the fundamental j1; 1; 1i, j1;�1; 1i and j � 1; =;�1i eigenmodes obtained from the

N ¼ 96 PrDi solver. Solid and dashed lines, respectively, correspond to positive (and zero) and negative levels. The contour levels (15 in

(a,c) and 31 in (b)) are evenly distributed in between the following ranges: (a-1): ½0; 10�4�, (a-2): ½�4� 10�9; 0�; (b-1):

½�2� 10�5; 2� 10�5�, (b-2): ½�7� 10�11; 7� 10�11�; (c-1): ½0; 9� 10�5�, (c-2): ½�3� 10�9; 0�.
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8. Results

The complete L spectrum is computed (MATLAB software, [1]) with N ¼ 16, 32, 48, and only the 200

leading eigenmodes (ARPACK Library, [21]) for N ¼ 64, 96. The N ¼ 96 results are taken as reference (cf.
[23]). The RH eigenvalue systems are solved using the Mathematica software [40]. A significant number of

Stokes eigenmodes is computed, in each symmetry family, with the cut-off I ¼ 15, 31, 63.
8.1. Convergence and interpretation of the numerical spectra

The convergence of the L spectrum is reported in Section 4.1, Table 3, in [22], where the 11 largest

eigenvalues obtained with N ¼ 8, 16, 32, 48 are provided. As also indicated in the same paper, the ei-

genvalues are spread into two categories with one set containing values converging towards integer mul-



E. Leriche, G. Labrosse / Journal of Computational Physics 200 (2004) 489–511 499
tiples of ð�p2=4Þ. From now on the eigenvalues are ordered in each family by increasing absolute value, and

denoted by kNk , k ¼ 1; 2; . . .
A first global glance at the convergence of the spectra with N is given in Fig. 3 where the ratios

jðk96k � kNk Þ=k
96
k j are plotted, as functions of �kNk =ðp2=4Þ, for k6 200, with circles whose diameter decreases

with increasing N . The exponential convergence clearly appears, with the cloud of smallest circles located at

about 10�9 and below. Another aspect of this convergence is instructive. With the same symbol conven-

tions, Fig. 4 shows the relative divergence norm, kr � ukk=kukk, still as a function of �kNk =ðp2=4Þ, where k|k
stands for the pointwise maximum absolute value of | and kuk ¼ max ðkuk; kvkÞ. Two different clouds

clearly appear, joined by a scattered line of large diameter circles. The first is a crowded dark cloud con-

taining circles of any diameter (i.e data of any N ’s) and lies at finite values of the ðr � uÞ relative norm. It

corresponds to eigenmodes whose divergence does not vanish, with their associated eigenvalues converging
with N towards a multiple integer of �p2=4. A second cloud, much less loaded, expands below 10�2 in

ðr � uÞ relative norm. It contains the genuine Stokes eigenmodes whose ðr � uÞ relative norm exponentially

decreases with N , until reaching two different levels located at about 10�5 and 10�9, as announced at the end

of Section 7. The eigenvalues of the second cloud can be checked against the spectra obtained from the RH

solver of the biharmonic problem (3) and (4). The regular drift of increasing ðr � uÞ relative norms, going

from one cloud to the other, corresponds to the spatially under-resolved eigenmodes. As kk increases, with
fixed N , the spatial resolution degrades and the clouds merge at some finite large ðr � uÞ relative norms,

making it impossible to separate the genuine Stokes eigenmodes from the others.
All the N ¼ 16, 32, 48 L eigenvalues are given in Fig. 5. If one excepts the tails where particular effects

take place (commented below), an almost linear common behavior appears involving a large number of

eigenvalues (a thousand of them for N ¼ 48). The spectra contain few slightly complex eigenvalues, located

only in the tails (see Fig. 1 of Section 4.1 in [22]), and represented here by their real part.
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8.2. The Stokes eigenspace

8.2.1. The eigenvalues

The RH spectra obtained with I ¼ 63 are shown in Fig. 6. They contain I2 ¼ 3969 modes j � 1; =;�1i,
IðI þ 1Þ=2 ¼ 2016 modes j1; 1; 1i and j1;�1;�1i, and IðI � 1Þ=2 ¼ 1953 modes j1;�1; 1i and j1; 1;�1i.
Here again one observes a rapid increase of the extremal eigenvalues, while the remaining (major) part

evolves almost linearly, in agreement with the asymptotic evaluation of [14], and thus corresponds to the

true spectrum behavior. For the modes which are invariant under p-rotation, four families among the six,

the slopes are approximately identical and twice larger than those of the j � 1; =;�1i families. The fine

structure of these spectra is illustrated in the enlargement. All these eigenvalues are unique, but they appear

by sequences of packets of variable population within which they evolve more slowly than the global
spectrum.

From the computed RH spectra, it is now possible to provide an empirical expression of their average

behavior. From the analysis made in [14], to the leading linear law a
ffiffiffi
k

p
term might be added as a second

order contribution. This is confirmed by our data. A systematic deflection from a linear law is indeed

detected, except for the j1; 1; 1i family. Five laws, tðkÞ ¼
PL

l¼1 slk
1=l with L going from 1 to 5, are thus tried

and fitted with the Mathematica software on a part of the almost linear region, that is with the Np data

points indicated between parentheses in Table 1. The fits are appreciated by computing on 1:5Np the relative

deviations EðkÞ ¼ ðtðkÞ � jkk � k1jÞ=jkk � k1j. Table 1 gathers the results of the best fits of �ðkk � k1Þ for the
I ¼ 15, 31, 63 Galerkin–RH expansions. The k1’s are listed in the first row of Table 2. For all but the first

family of Table 1, a
ffiffiffi
k

p
contribution is required to get EðkÞ distributions equally distributed around zero

with a small amplitude. The second quantity quoted between parentheses in this table is

E ¼ maxk6 1:5Np jEðkÞj. In all cases, E comes from the very beginning of the spectra. The other terms in tðkÞ
do not improve the fits.

λ
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Table 2

The seven fundamental Stokes eigenvalues (�k96k ) of each symmetry family, from the PrDi solver

k j1; 1; 1i j1;�1; 1i j1; 1;�1i j1;�1;�1i j � 1; =;�1i

1 13.086172791 38.531365767 67.280247001 32.052396078 23.031098494

2 41.757293817 87.329014683 125.25490397 69.769769316 47.392967028

3 61.581799188 106.35481679 155.42440823 100.96668085 61.580567435

4 90.687786716 156.16400139 203.55279952 127.97463234 81.660851437

5 108.69671662 173.68562127 232.20521027 157.61101251 95.076821486

6 150.21201788 214.44928129 283.39513465 206.15332909 120.42199692

7 159.67204918 244.84208020 301.84064257 209.72464870 125.98729896

Table 1

The best fits of the Stokes spectra �ðkk � k1Þ for each symmetry family, with (Np;E), respectively, the number of data points of the fit

and the maximum relative error in the square, and of the fully periodic Stokes spectra

I j1; 1; 1i j1;�1; 1i j1; 1;�1i j1;�1;�1i j � 1; =;�1i

15 25:0k 20:1
ffiffiffi
k

p
þ 25:9k 34:6

ffiffiffi
k

p
þ 26:4k 13:7

ffiffiffi
k

p
þ 25:7k 12:7

ffiffiffi
k

p
þ 12:8k

(50, 0.06) (50, 0.06) (50, 0.06) (50, 0.06) (100, 0.06)

31 25:0k 23:3
ffiffiffi
k

p
þ 25:3k 40:2

ffiffiffi
k

p
þ 25:5k 16:0

ffiffiffi
k

p
þ 25:3k 14:3

ffiffiffi
k

p
þ 12:6k

(200, 0.02) (200, 0.02) (200, 0.02) (200, 0.02) (400, 0.015)

63 25:1k 24:9
ffiffiffi
k

p
þ 25:2k 43:5

ffiffiffi
k

p
þ 25:2k 17:2

ffiffiffi
k

p
þ 25:2k 15:2

ffiffiffi
k

p
þ 12:6k

(1000, 0.008) (1000, 0.007) (1000, 0.007) (1000, 0.007) (2000, 0.005)

62 �31:5
ffiffiffi
k

p
þ 25:1k �5:3

ffiffiffi
k

p
þ 25:1k 32:

ffiffiffi
k

p
þ 25:2k 5:6

ffiffiffi
k

p
þ 25:1k 12:6k

(1000, 0.008) (1000, 0.008) (1000, 0.006) (1000, 0.007) (2000, 0.007)
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The temporal decay rates of the four families j1;�1;�1i only differ by the
ffiffiffi
k

p
contribution. Their

spectra have identical linear slopes which are twice as large as the linear slope of the j � 1; =;�1i families.

This important difference is a direct effect of the symmetry properties of these families. The four families

j1;�1;�1i have the highest degree of symmetry. Being eigenmodes of the p=2-rotations, their wavenumber

must increase in both x and y directions, giving the corresponding eigenvalues a faster growth than in the

j � 1; =;�1i families.

Let us consider the fully periodic Stokes eigenmodes of wavelength equal to two (the square charac-
teristic size), written for each symmetry family according to:
j1; 1; 1i � cosðmpxÞ cosðnpyÞ þ cosðnpxÞ cosðmpyÞ; mP n ¼ 0; . . . ; I ;
j1;�1; 1i � cosðmpxÞ cosðnpyÞ � cosðnpxÞ cosðmpyÞ; m > n ¼ 0; . . . ; I ;
j1; 1;�1i � sinðmpxÞ sinðnpyÞ � sinðnpxÞ sinðmpyÞ; m > n ¼ 1; . . . ; I ;
j1;�1;�1i � sinðmpxÞ sinðnpyÞ þ sinðnpxÞ sinðmpyÞ; mP n ¼ 1; . . . ; I ;
j � 1; =; 1 > � sinðmpxÞ cosðnpyÞ; m ¼ 1; . . . ; I ; n ¼ 0; . . . ; I ;
j � 1; =;�1i � cosðmpxÞ sinðnpyÞ; m ¼ 0; . . . ; I ; n ¼ 1; . . . ; I :



kŠ �01 53 0| 1

| 1| 1
The corresponding spectra can be exactly computed and are shown in Fig. 7 for I ¼ 62. They exhibit very

similar behaviors to those given in Fig. 6: they contain an almost linear part and a rapidly increasing tail.

Fitting the linear part, with the previously mentioned method, provides the results presented in the last row
of Table 1. Here k1 ¼ 0; p2; 5p2; 2p2; p2; p2 for the successive symmetry families. The linear parts of the

confined and fully periodic Stokes eigenmodes spectra are in excellent agreement. They only differ by theffiffiffi
k

p
contributions which are important to describe the beginning of the spectra. It can thus be inferred that

the confinement merely affects this contribution in the Stokes eigenmodes spectra.

The 1D confined Stokes eigenmodes cannot be considered with all these symmetry families, since by

definition they have no p=2-rotation symmetry. They only pertain to the j � 1; =;�1i families described by

the following stream function expressions:

coshðnpxÞ
coshðnpÞ

�
� cosðlevenxÞ

cosðlevenÞ

�
sinðnpyÞ; sinhðnpxÞ

sinhðnpÞ

�
� sinðloddxÞ

sinðloddÞ

�
cosðnpyÞ:

Computing the spectra is not straightforward. Their asymptotic evolution, by ordering in kk, is also mainly

linear and described by the respective sequences of eigenvalues ½ð2mþ 1Þ2 þ ð2nÞ2�ðp2=4Þ and
½ð2mÞ2 þ ð2nÞ2�ðp2=4Þ, with the linear slope 12.6 already encountered with this family.

All these results suggest that the asymptotic spectra per symmetry family of the Stokes eigenmodes

follow specific evolution laws, whether they be confined or not.

Finally, the observed behavior of the tails in the numerical spectra is now briefly discussed. This behavior

is due to two effects: firstly, the cut-off influence on a 2D spectrum ordered by increasing eigenvalues, also

present in the analytical periodic spectrum. A second contribution is expected from pure numerical trun-

cation effects, as already observed and analytically verified with the numerical d2=dx2 spectrum (cf. [39,15,

Fig. 2.7.2. p. 81]).
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8.2.2. The eigenmodes

Figs. 8 and 9, respectively, show the stream function wkðx; yÞ and the normalized vorticity xkðx; yÞ=jkkj
contour lines of the first seven eigenmodes in each symmetry family, their corresponding eigenvalues being
listed in Table 2. These data come from the N ¼ 96 PrDi solver. The stream functions are normalized in

such a way that the largest nodal value is set to one. These charts are not intended to exhibit the corner

eddies (see [23]) whose existence in our numerical fields is simply suggested by a tiny w ¼ 0 contour in each

corner in Fig. 8, and attested to by the enlargements in Fig. 2 made from the contour plots of the fun-

damental j1; 1; 1i, j1;�1; 1i and j � 1; =;�1i eigenmodes. The first two modes have opposite reflection

symmetry properties about the square diagonals, and the third one does not show this property although

it appears as mainly symmetrical (see Section 7). The size of the corner eddies is seen to decrease with

increasing jkkj.
As expected, the largest is jkkj the highest is the number of elementary patterns (structures), or in other

words, the highest is the ‘‘average wavenumber’’ of the w and x fields.

Albeit simple a priori, the dynamics underlying the eigenmodes behavior deserves to be described with

some details. To this end, Fig. 10 shows the contour lines of each component of u, Du and rp of the 3rd

j1;�1;�1i eigenmode, three quantities which must be balanced according to Eq. (2). Two regions of the

flow are considered. The first one, denoted by RB, is a layer going along the boundaries in which the

pressure gradient is important, and the second, RC, is the core where this gradient gets very small. The RB

layers get thinner and thinner as jkkj increases. The reason why the pressure gradient is so confined near the
boundaries is contained in the system (7): by Eq. (11) the pressure along the boundaries is almost periodic

(see the Du contour lines) and its harmonicity makes it exponentially decreasing going away from them,

more and more stiffly with increasing jkkj.
Consequently, a specific dynamic equilibrium prevails in each region. In RB the velocity amplitude

vanishes and the balance is expressed by the condition (11). In RC the balance is isobaric, given by ku ¼ Du,
as in the fully periodic case (see Eq. (5)). This is what one sees by comparing the ku and Du contour plots in

the flow core.

Then comes a relationship verified by any 2D flow, steady or not, confined or not, namely ðDu � rÞx � 0
from which it is straightforward to check that kðu � rÞx ¼ 0 in RC: this implies that the vorticity is con-

served along the Stokes eigenmodes stream lines in RC. In other words, there exists a relationship x ¼ f ðwÞ
which must be linear in the Stokes problem. Moreover, this slope is equal to �k as expected from the

buckling load equation which can be derived from xðx; yÞ ¼ �Dw ¼ �kw. The same relation holds in the

case of the fully periodic situation. The confirmation is provided by comparing in RC the w and x contours

in Figs. 8 and 9, for each eigenmode. The effective (w, x) correlation is given in Fig. 11, obtained defining

arbitrarily RC to be ½�0:6; 0:6�2, and normalizing the vorticity by the corresponding �kk. Although the

relationship x ¼ �kw is expected to be better verified with larger jkj’s, it clearly underlies all these graphs,
almost exactly for some of them including the most fundamental ones, whilst for others it is slightly

scattered and generates a zigzag path around x ¼ �kw.
The relationship x ¼ �kw can then be taken as specific to the particular dynamics of the 2D Stokes

eigenmodes.

By careful inspection of the contour plots within the regions RC in Figs. 8 and 9, where the ratio x=w is

constant and positive, one can see the x ¼ 0 contour line. It often closely follows the square boundary. This

contour can certainly be considered as the extreme outer border of RC, whose area grows with jkj per
symmetry family.

A functional relationship between the stream function and the vorticity of steady 2D confined flows at

high Reynolds number was suggested a long time ago by Batchelor [3,4, p. 536] to characterize the inviscid

regions. Beside the few attempts quoted in [37,38] to identify this relationship, it has been proposed in

[37,38] that a functional relationship could also exist for the Stokes eigenmodes. The first five fundamental

modes in the square were therein published, namely the first three j1; 1; 1i and two j1;�1; 1i eigenmodes of
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Fig. 11. The (w;x) correlation obtained in RC ¼ ½�0:6; 0:6�2 for the first seven eigenmodes of each symmetry family.
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Table 2. The linear correlation was detected only for the most fundamental one. It is therefore clearly

settled now that a linear relationship does exist between the stream function and the vorticity in the core of

all the Stokes eigenmodes in the square.
This is a definite answer, and conclusion, to the discussion developed in [4, p. 537], where Batchelor

writes ‘‘Thus a solution for w as a function of x and y obtained from �x ¼ Dw ¼ kw represents either a

steady motion of an inviscid fluid, or, when multiplied by expð�ktÞ, a decaying motion of viscous fluid’’. In

fact the linear relationship is verified in the core of the Stokes eigenmodes in the square (and presumably in

any closed geometry), while this relation should be nonlinear for the inviscid dynamics. Moreover, it is

worth noticing that the well-known Bernouilli relation u� ~x ¼ rH characterizing the ‘‘total head’’ H
gradient in the inviscid regions has a ‘‘viscous partner’’ for each Stokes eigenmode within RC, namely

u� ~x ¼ ðk=2Þrw2.
The above described dynamics must hold for the 3D Stokes eigenmodes, in the cube for instance. The

pressure will again tend to zero far from the walls, where the momentum balance remains essentially

governed by ku ¼ Du. But ðDu � rÞ~x 6¼ 0 in 3D flows.
9. Conclusions

Two different solvers have been used to compute the Stokes eigenmodes in the square, a (velocity,
pressure) PrDi solver based on a Chebyshev collocation scheme and a Galerkin–RH expansion for the

Stokes stream function formulation. The former solver supplies genuine Stokes eigenmodes whose diver-

gence cancels asymptotically with the grid refinement, distributed among many eigenmodes of another

system, the divergence diffusion problem. From both solvers comes the complete identification of the

Stokes eigenmodes in the square for each of the six symmetry families which can be defined in the square.

The spectra �kk are asymptotically linear in k, but contain, for all but one symmetry family, a significant

contribution in
ffiffiffi
k

p
. The existence of both these terms was theoretically predicted in [14]. The slopes are

sensitive to the symmetries. In particular, the linear growth of the spectra in the four symmetry families
which are invariant under the p-rotation is twice as large as that of the other two families. Two dynamic

equilibria govern the eigenmodes velocity fields. The first occurs along the boundaries where the pressure

gradient compensates the momentum diffusion, as in a Poiseuille flow. The second occurs in the core where

the equilibrium is isobaric. In this region a linear relationship occurs between the vorticity and the stream

function of each eigenmode, x ¼ �kw, leading to u� ~x ¼ ðk=2Þrw2, a ‘‘viscous’’ relation which echoes the

total head gradient one of the inviscid parts of the high Reynolds number flows. Therefore, the confined 2D

flows enjoy the property of having their vorticity in functional relationship with the stream function, in

both viscous and inviscid regimes. This was suggested more than 30 years ago by Batchelor [4].
The knowledge and interpretation of the Stokes eigenmodes in the square should thus bring an inter-

esting point of view over the resulting dynamics of 2D closed flows, complementary to what is well known

regarding the inviscid regions. Analyzing the 3D Stokes eigenmodes, in the cube for instance, will likely

provide valuable understanding elements on realistic flows.
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